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SUMMARY 
 
Accurate classification of somatic variations from high-throughput sequencing data has 
become integral to diagnostics and prognostics across various cancers. However, the 
classification of these variations remains highly manual, inherently variable, and largely 
inaccessible outside specialized laboratories. Here, we introduce Azurify - a 
computational tool that integrates machine learning, public resources recommended by 
professional societies, and clinically annotated data to classify the pathogenicity of 
variations in precision cancer medicine. Trained on over 15,000 clinically classified 
variants from 8,202 patients across 138 cancer phenotypes, Azurify achieves 99.1% 
classification accuracy for concordant pathogenic variants in data from two external 
clinical laboratories. Additionally, Azurify reliably performs precise molecular profiling in 
leukemia cases. Azurify’s unified, scalable, and modular framework can be easily 
deployed within bioinformatics pipelines and retrained as new data emerges. In addition 
to supporting clinical workflows, Azurify offers a high-throughput screening solution for 
research, enabling genomic studies to identify meaningful variant-disease associations 
with greater efficiency and consistency.
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 1 

INTRODUCTION 1 

The classification of clinically relevant genomic variations through next-generation 2 
sequencing (NGS) is integral for precision clinical diagnosis and molecular-driven 3 
treatment stratification (Morash et al. 2018; Mardis 2019). Professional organizations 4 
such as the American College of Medical Genetics (ACMG), American Molecular 5 
Pathologists (AMP), American Society of Clinical Oncology (ASCO), and the College of 6 
American Pathologists (CAP) have all iterated over systems and guidelines to assist in 7 
defining the pathogenicity and reporting criteria for cancer variations (Sukhai et al. 2016; 8 
Sirohi et al. 2020). Despite efforts from these groups to establish relevant classification 9 
criteria, studies have shown that variability across practitioners persist and only 41% of 10 
responding laboratories used published guidelines without any alteration, and 18% of 11 
respondents used no published schema (Spence et al. 2019). While data consortiums 12 
and professional guidelines aim to assist in variant classification, there is a clear gap in 13 
accessible methods that can reduce variability in the field. Additionally, there is no known 14 
framework for laboratories to leverage and scale their own classifications to assist 15 
evaluation of future events as new data becomes available, which may be particularly 16 
useful to those who combine published guidelines or develop their own internal schema. 17 
 18 
Today, cancer variant classification relies on the manual review of pertinent resources 19 
that help clinical practitioners evaluate a given variant and its association with a particular 20 
disease. ACMG and AMP outline their criteria for reporting sequence variants in germline 21 
and somatic cancers respectively and additionally provide several resources that can be 22 
used to categorize variants based on pathogenicity potential (Richards et al. 2015; Li et 23 
al. 2017). While classification schemas may differ in their number of classes, 24 
nomenclature, and criteria; these schemas can be summarized broadly as pathogenic 25 
variants having clear disease implications, likely pathogenic variants having a high 26 
likelihood of disease implication; variants of uncertain significance (VUS) having an 27 
unknown impact, and likely benign or benign variants having little or no association with 28 
cancer. The criteria to make these classifications include but are not limited to the 29 
presence of available therapies, allelic frequency, status in population/germline/somatic 30 
variant databases, pathway involvement, predictive software, and available publications 31 
and case studies.  32 
 33 
To ease the time burden of cross-referencing resources across disparate datasets, 34 
variant classification methods and platforms have been developed that aggregate well-35 
defined resources. Platforms such as ClinGen, which aims to aggregate, curate, and 36 
disseminate variant curation data have become valuable tools in classifying genomic 37 
variants. To extend this further, algorithms have been developed to computationally score 38 
and classify variants (AlKurabi, AlGahtani, and Sobahy 2023; Li et al. 2022). Yet, none of 39 
the existing methods have leveraged machine learning to directly classify variants by 40 
integrating a full feature set from recommended resources with data from a CAP/Clinical 41 
Laboratory and Amendments (CLIA) compliant diagnostic center.  42 
 43 
To address this, we developed and deployed Azurify, a machine learning-based model 44 
trained using over 15,000 variants classified according to a five-tiered schema developed 45 
internally at a CAP/CLIA-compliant diagnostic laboratory. This schema categorizes 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2025. ; https://doi.org/10.1101/2025.04.18.649588doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.18.649588
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

variants into Pathogenic, Likely Pathogenic, VUS, Likely Benign, and Benign, paralleling 47 
widely adopted classification systems but based entirely on internal curation standards, 48 
workflows, and expert review. Azurify integrates a comprehensive feature set including 49 
variant annotations, population frequency data, clinical databases, pathway associations, 50 
and predictive scoring algorithms into a unified classification engine. The model is fully 51 
pipeline-able, allowing seamless integration into existing bioinformatics workflows. Its 52 
architecture is modular, easily retrainable, and designed to scale with expanding 53 
datasets, enabling it to evolve alongside newly available clinical or consortium data. 54 
 55 
When tested on independent datasets from two external CAP/CLIA-validated 56 
laboratories, Azurify achieved a classification accuracy of 99.1% on concordant variants. 57 
Additionally, Azurify was able to recapitulate established molecular maps in multiple 58 
hematological malignancies. The Azurify algorithm and resources are well documented 59 
and modularly designed to allow rapid deployment and adaptation to specific needs. Our 60 
analysis shows that the application of Azurify addresses the unmet need for robust and 61 
accessible cancer variant classification by providing an effective and accurate variant 62 
pathogenicity meta-predictor that could assist as a preliminary screening tool for manual 63 
clinical review. Azurify also serves as a high-throughput screening tool for research, 64 
particularly in studies seeking to analyze large cohorts and identify meaningful genotype-65 
phenotype associations at scale. By providing standardized and reproducible 66 
classifications across thousands of variants, Azurify has the potential to accelerate 67 
discovery and hypothesis generation in cancer genomics. 68 
  69 
Azurify offers a scalable and accurate variant pathogenicity predictor that addresses key 70 
limitations in current variant classification practices. Its modularity, documentation, and 71 
availability at https://github.com/faryabiLab/Azurify make it a valuable resource for both 72 
clinical and research applications seeking to enhance and scale genomic variant 73 
classification. 74 
 75 
Results 76 
  77 
The Azurify Model 78 
 79 
Azurify seeks to combine features defined by experts in the field of somatic variant 80 
annotation with clinically issued training labels to generate a predictive machine learning 81 
classifier (Figure 1). We designed Azurify using gradient boosted decision trees (GBDT). 82 
This class of algorithms are able to produce accurate results in multi-class classification 83 
problems. GBDT algorithms offer high performance when using heterogeneous data 84 
types with multiple decision dependencies, which is often the case in cancer variant 85 
classification (Prokhorenkova et al. 2018). To train the GBDT model, a 50-50 train-test 86 
split was performed on nearly a million variants classified using tumor-only molecular 87 
profiling from 8,202 patients at the University of Pennsylvania (UPenn) encompassing 88 
138 electronic health records (EHR) designated cancer phenotypes (Table S1). Over 89 
91.16% of variants retrieved from the UPenn cohort were classified as benign, with 90 
another 4.17% and 3.78% classified as pathogenic and VUS, respectively. Only 0.03% 91 
were classified as likely pathogenic and even fewer, 0.02% were classified as likely 92 
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benign (Figure S1A). Longitudinal analysis of variants that had been classified multiple 93 
times showed that 3.12% of variants changed classes, with most variants being re-94 
classified as VUS (Figure S1B). These data were fed to the GBDT model at a learning 95 
rate of 0.3 and cross-validation testing accuracy showed an average test accuracy of 96 
99.5%, which did not measurably increase after 200 training iterations with the difference 97 
between iterations <0.000001% (Figure S2A). Iterative model generation using randomly 98 
sampled variants from the training set showed that at least 300,000 variants were 99 
required to distinguish the sparsely used classes (Figure S2B). As a result, the final 100 
Azurify model was trained using the breadth of the training set (448,319 variants) and 101 
achieved 99.86% training accuracy at 198 iterations (Figures S2A and S2B). 102 
 103 
For model features, we have selected 8 resources in conjunction with genomic features 104 
to encompass published guidelines as outlined by ACMG and AMP (Richards et al. 2015; 105 
Li et al. 2017). This included data for available therapies (Griffith et al. 2017), presence in 106 
healthy (Gudmundsson et al. 2022) and disease population (Tate et al. 2019), gene 107 
presence in cancer pathways (Kanehisa and Goto 2000), both crowd-sourced (Landrum 108 
et al. 2018) and software-derived (Qi et al. 2021) pathogenicity, associated publication 109 
data (Allot et al. 2018), and genomic features such as protein domain (UniProt 110 
Consortium 2021), translational effect (Cingolani et al. 2012), exon, variant type, and 111 
allelic frequency (Table S2). To assess the impact of each resource, feature importance 112 
was calculated as the average percentage of contribution to each of the 5 classes in our 113 
multi-classification model. This analysis revealed that each of the resources 114 
recommended through professional guidelines effectively contribute to variant 115 
classification (Figure 2A). One-vs-Rest receiver operator curves (ROC) showed that 116 
Azurify outperformed any single resource for classification of pathogenic and VUS 117 
variants (Figures 2B and 2C). Similarly, Azurify outperformed any single resource for 118 
classification of likely pathogenetic, likely benign, and benign variants (Figure S3).  119 
 120 
Azurify accurately classifies variants in the holdout data. 121 
 122 
To examine Azurify performance, we first compared concordance between Azurify and 123 
manually annotated variants in holdout data with the same genes and loci used in model 124 
training (Figures 3A and 3B). Benign variations encompass over 91% of the variations 125 
found in the holdout dataset. While these variations are not clinically relevant in cancer 126 
diagnostics, their prevalence requires accurate segregation. Azurify effectively achieved 127 
this objective by accurately classifying 99.89% of benign variations (Figure 3A). VUS, 128 
where the clinical impact cannot be fully ascertained, represented the next biggest variant 129 
class in the holdout dataset. Azurify achieved 95.63% accuracy in VUS variant 130 
classification. Likely benign and likely pathogenic variants were classes that were 131 
infrequently observed in our available data, representing less than 0.06% of clinical 132 
classifications. Given the paucity of these classes in both holdout and training datasets, 133 
Azurify only showed 47.74% and 52.76% accuracy in classification of likely benign and 134 
likely pathogenic variants, respectively. Pathogenic variants are the most impactful as 135 
they are likely to affect prognosis and treatment, having an established role in cancer. 136 
Notably, Azurify correctly classified pathogenic mutations with 98.81% accuracy when 137 
compared to manual clinical review (Figure 3A). The achieved accuracy in the holdout 138 
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set indicates that Azurify performs well in pathogenic, VUS, and benign categories, which 139 
are used frequently in clinical practice, but encounters potential challenges when applied 140 
to likely pathogenic and likely benign classifications, which are infrequently applied in 141 
clinical practice. 142 
 143 
Average precision (AP) calculations across the same holdout data showed that Azurify 144 
classified pathogenic and benign variants with greater than 99% precision (Figure 3B). 145 
Classification of VUS variants resulted in an AP of greater than 88%, while classification 146 
of pathogenic and likely benign events resulted in 92% and 90% AP, respectively (Figure 147 
3B). To examine the effect of cancer type prevalence on performance, we divided the 148 
holdout data into quartiles of solid tumor types based on presentation frequency and 149 
assessed the average precision (Table S3). This analysis showed that the classification 150 
of well represented pathogenic, VUS, and benign classes was invariant to cancer type 151 
prevalence in the cohort, while the performance varied for less represented likely 152 
pathogenic and likely benign classes (Figures S4A-D). For example, we did not observe 153 
a marked difference between Azurify’s average precision for classifying variants in 154 
genetically well characterized and moderately represented breast cancer compared to 155 
other solid tumors in the UPenn holdout data (Figures S4E and S4F). 156 
 157 
Azurify accurately classifies pathogenic variants independent of clinical NGS 158 
assay. 159 
 160 
To further evaluate Azurify performance, we created an independent test set by obtaining 161 
reportable variation data from 3,411 patients sequenced using an independent 162 
CAP/CLIA-validated clinical assay at UPenn. This test data was generated using different 163 
biochemistry, technology, informatics, and gene sets than those used in the training 164 
(Figure 2) and validation (Figures 3A and 3B), illustrating independence from upstream 165 
variables common in clinical cancer diagnostic assays. In addition to the 237 genes 166 
included in Azurify training, the UPenn independent dataset comprised 32 new genes that 167 
had not been previously observed by the Azurify model (Table S4). We evaluated the 168 
accuracy of Azurify when compared to clinical review using the same classification 169 
criteria. 170 
 171 
In the 237 genes for which Azurify had training data, pathogenic variants were classified 172 
with an accuracy of 96.52% (Figure 3C). When evaluating classes comprising the 173 
remaining reportable variants, the accuracies were as follows: 40.18% for likely benign (n 174 
= 331), 84.27% for VUS (n = 4183), and 55.32% for likely Pathogenic (n = 430) (Figure 175 
3C). Just as in model training, likely pathogenic and likely benign classifications were 176 
present infrequently, comprising only 3.1% and 7.1% of variants, respectively. Evaluating 177 
the 32 genes for which Azurify had no training data, class accuracy values were as 178 
follows: pathogenic 84.26 % (n = 108), likely pathogenic 3.03% (n = 33), VUS 84.59% (n 179 
= 585), and likely benign 96% (n = 25) (Figure 3D). Publicly available data for the 32 180 
genes evaluated with no prior training data was considerably sparser, explaining the drop 181 
accuracy for a model that aggregates such resources. Overall, these analyses show that 182 
Azurify performs best when evaluating genes used in training, while still providing 183 
acceptable performance in previously unobserved genes. 184 
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 185 
Azurify accurately classifies pathogenic variants in datasets from two external 186 
laboratories.  187 
 188 
To ensure the generalizability of Azurify performance, we next examined its ability to 189 
classify variants from laboratories outside UPenn. To this end, we obtained variant 190 
classification data for patients with Acute Myeloid Leukemia (AML) and lung cancer from 191 
clinical laboratories at the University of Alabama at Birmingham (UAB) and the University 192 
of Chicago (UC). Similar to UPenn, CAP/CLIA-certified clinical laboratories at UAB and 193 
UC perform high throughput sequencing for cancer diagnostics. Each clinical laboratory 194 
had independently developed sequencing assays, informatics, and variant classification 195 
schemas.  196 
 197 
In total, we analyzed 101 clinical cases from UAB and UC (Table S5). UAB uses a three-198 
class variant reporting schema, classifying variants as pathogenic, VUS, and benign. In 199 
contrast, UC classifies variants into four tiers: pathogenic (Tier 1), likely pathogenic (Tier 200 
2), VUS (Tier 3), and benign (Tier 4). We first evaluated Azurify performance in annotating 201 
UAB and UC datasets separately without adjusting for differences between their variant 202 
reporting schemas. Across both datasets, Azurify achieved an average classification 203 
accuracy of 96.34% and 87.31% for pathogenic variants in lung cancer and AML cases, 204 
respectively (Figures S5A-D).  205 
 206 
Next, we assessed Azurify performance in comparison to clinical reviews while mitigating 207 
differences in the UAB and UC variant reporting schemas. We grouped the variants that 208 
were originally reported as pathogenic or likely pathogenic into a single pathogenic class. 209 
Similarly, we grouped the variants that were originally reported as VUS or benign as the 210 
non-pathogenic class. Using these harmonized variant labels from the reporting 211 
laboratories as ground truth, we then assessed Azurify performance in classifying 212 
pathogenic and non-pathogenic variants from UAB and UC. Azurify achieved a 213 
classification accuracy of 98.93% and 92.31% for non-pathogenic and pathogenic 214 
variants, respectively, in lung cancer cases from both laboratories (Figure 4A). Similar 215 
analysis of AML variants from both laboratories showed that Azurify classified non-216 
pathogenic and pathogenic variants with 99.03% and 88.34% accuracy, respectively 217 
(Figure 4B). 218 
 219 
Close examination of UAB and UC datasets revealed a sparsity of overlap between their 220 
reported variants, potentially due to differences in variant reporting schema (See 221 
Methods). Nevertheless, we assessed the level of concordance between UAB and UC 222 
(Figures S5E and S5F) and examined Azurify performance based on concordantly 223 
reported variants (Figures 4C and 4D). When evaluating concordantly reported variants, 224 
Azurify achieved 100% accuracy in classifying non-pathogenic events in both AML and 225 
lung cancer. Similarly, Azurify exhibited high accuracy in identifying concordantly reported 226 
pathogenic variants with a classification accuracy of 96.4% and 100% in lung cancer and 227 
AML cases, respectively.  228 
 229 
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Taken together, these benchmarking analyses support Azurify model generalizability and 230 
show its ability to robustly classify pathogenic variants despite reporting schema 231 
differences. These studies further suggest that data harmonization could enhance Azurify 232 
performance and hints to classification schema standardization as a key step towards 233 
developing more reliable variant classification tools. 234 
 235 
Azurify compares favorably against another variant classification tool.  236 

CancerVar is a tool for the clinical interpretation of somatic variants (Li et al. 2022). While 237 
Azurify does not attempt to interpret somatic variations, both methods do classify variants 238 
according to professional guidelines and thus warrant comparison.  239 
 240 
We first compared performance of CancerVar and Azurify using the UPenn independent 241 
dataset. CancerVar uses AMP/ASCO/CAP 2017 reporting guidelines, which classify 242 
variants into 4 tiers; hence, there is no exact 1:1 conversion between CancerVar and 243 
Azurify classifications. Nonetheless, the UPenn independent dataset (Figures 3C and 244 
3D) contained only the first 4 variant classifications allowing for the following conversion: 245 
Tier 1 = Pathogenic, Tier 2 = Likely Pathogenic, Tier 3 = VUS, and Tier 4 = Likely Benign 246 
variants. Using CancerVar API, we attempted to annotate the entirety of variants in the 247 
UPenn independent dataset based on their hg19 assembly chromosome, genomic 248 
position, reference, and alternate allele. However, the CancerVar API failed to produce 249 
results for 3,004 out of 11,080 queried variants (27.1%), forcing us to remove them from 250 
the comparative analysis.  251 
 252 
Azurify outperformed CancerVar in detection of pathogenic, VUS, and likely benign 253 
variants but not likely pathogenic (Figure 5A). CancerVar showed higher accuracy in 254 
annotating likely pathogenic variants with an accuracy of 41.03% compared to Azurify’s 255 
24.10%, potentially due to the low number of this class of variants in Azurify training 256 
dataset. Notably, Azurify’s classification of pathogenic variants was 7.1 times more 257 
accurate than CancerVar (97.51 % vs 13.6%). Similarly, Azurify produced 2.1-fold (38.8% 258 
vs 18.3%) and 1.2-fold (84.31% vs 67.11%) higher accuracy in classification of likely 259 
benign and VUS mutations, respectively. 260 
 261 
We next compared performance of CancerVar and Azurify using all the variants in the 262 
UAB and UC datasets (Figures 4A and 4B). This analysis showed that Azurify 263 
maintained its performance advantage. While Azurify correctly classified 92.2% of all the 264 
pathogenic variants in the two datasets, CancerVar completely failed to process 30.02% 265 
of the variants and only correctly classified 52.54% of the variants that were processed 266 
(Figure S6A). Finally, we benchmarked relative performance of CancerVar and Azurify 267 
using variants concordantly reported by both UAB and UC (Figures 4C and 4D). This 268 
analysis led to markedly closer performance, with Azurify and CancerVar classifying 269 
pathogenic variants with an accuracy of 98.53% and 95.56%, respectively (Figure S6B). 270 
Taken together, this data demonstrates improved performance of Azurify compared to 271 
CancerVar and further suggests the benefit of variant schema harmonization in improving 272 
variant classification tools.  273 
 274 
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Azurify identifies emergent somatic variants and established germline variants.  275 

When reviewing Azurify-classified data, we observed several variants that were 276 
algorithmically labeled as pathogenic while clinically reported as likely pathogenic 277 
(Figures 3C and 3D). To corroborate this assertion, we evaluated 190 ClinVar classified 278 
pathogenic variants and assumed the crowdsourced classifications as ground truth. Of 279 
these 190, 15 were classified as pathogenic by both Azurify and manual review and 11 280 
were classified as pathogenic only by Azurify and ClinVar (Figure 5B). Within these 11 281 
overlapping variants, Azurify classified a p.Val834Leu variation in EGFR as pathogenic. 282 
At the time of assessment, this variation was an inclusion criteria in a phase 1 clinical trial, 283 
underscoring Azurify’s ability to identify relevant somatic variations based on emerging 284 
literature (Clinical trial: NCT04085315).  285 
 286 
Azurify was also able to identify causal germline variants not associated with cancer 287 
according to ClinVar. Variant p.Arg790Gln in gene SMC1A was annotated by two 288 
institutions, 7 years apart, as being of both germline origin and pathogenic (NCBI ClinVar 289 
query). This variant is relevant in congenital muscular hypertrophy-cerebral syndrome 290 
(Deardorff et al. 2007) and explains its downgraded clinical classification when reported 291 
by a somatic diagnostic center.  292 
 293 
Azurify accurately recapitulated patterns of co-mutation in Acute Myeloid 294 
Leukemia.  295 
  296 
To showcase Azurify's effectiveness in identifying prognostically relevant AML subtypes, 297 
we analyzed genomic variants across 326 AML patients, spanning 617 sequencing 298 
events in the UPenn cohort. AML is a hematologic malignancy with prognostically 299 
important molecular subtypes (DiNardo and Cortes 2016). Specific subtypes can be 300 
determined based on the presence or absence of cooperative variations within epigenetic 301 
regulators and DNA-binding transcription factors. 302 
 303 
In line with earlier reports (Park et al. 2020), Azurify identified DMNT3A pathogenic 304 
variations in 23.7% of the cases in the UPenn AML cohort (Figure 6A). Azurify also 305 
correctly detected the expected frequency of co-mutations in DMNT3A and FLT3 as well 306 
as NPM1 and FLT3 (Bezerra et al. 2020) (Figure 6A). Further concordance between 307 
published literature and Azurify pathogenicity classification was observed when we 308 
examined mutations in RAS proto-oncogenes within the UPenn AML cohort. RAS 309 
variations have been reported in 10-15% of AML patients (Al-Kali et al. 2013). Azurify 310 
mirrored the reported mutation rate by classifying 11.5% of UPenn AML patients as RAS 311 
mutated. More specifically, NRAS (G12 C/D/S, G13 C/D/R/V, T581, Q61) and KRAS (G12 312 
A/D/S/V, G13D, Q61H, R68S, K117N) mutations were reported in 11.6% and 4.7% of 313 
AML cases, respectively (Ball et al. 2021). Our analysis of the UPenn AML cohort with 314 
Azurify recapitulated these observations and identified 12.72% and 6.5% mutation rates 315 
in these residues of NRAS and KRAS, respectively (Figure 6A).  316 
 317 
This analysis also confirmed our studies in Figure 5B and showed that Azurify can 318 
accurately identify mutations outside of the training regions of the genes for which it was 319 
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trained. Despite training data being centered around variations at amino acid 95 of 320 
SRSF2, a common occurrence in AML patients (Grimm et al. 2021), Azurify successfully 321 
classified oncogenic variations in SRSF2 by identifying variations in flanking nucleotides 322 
coding for the amino acid 95 (Figure S7A), enabling accurate evaluations beyond its 323 
training loci in known cancer genes (Figure 6B).  324 
 325 
Azurify accurately identifies mutations in Chronic Lymphocytic Leukemia. 326 
 327 
To further evaluate Azurify’s classification ability, we examined mutations in 73 chronic 328 
lymphocytic leukemia (CLL) patients in the UPenn cohort, which in comparison to AML 329 
had a much lower prevalence in our cohort (Table S6). To this end, we compared the 330 
mutation frequency of 22 genes mutually examined in both UPenn and Kinsbacher et al. 331 
cohorts (Knisbacher et al. 2022). Notably, we observed no significant differences in the 332 
frequency of pathogenic mutations identified by Azurify and Kinsbacher et al. (Figure 7A, 333 
Welch's t-test P-value=0.227). 334 
 335 
Upon closer examination of BIRC3, a gene associated with unfavorable outcomes in CLL 336 
(Diop et al. 2020; Tausch and Stilgenbauer 2020), we again observed Azurify’s ability to 337 
accurately classify pathogenic variants in amino acids of known cancer genes, which are 338 
reported to be pathogenic (Diop et al. 2020) but were not present in the Azurify’s training 339 
data (Figures 7 and S7B).  340 
 341 
Discussion  342 

Azurify benchmarking analysis revealed the promise of leveraging resources 343 
recommended in professional guidelines in conjunction with expert annotations to build 344 
classification models for efficient and accurate labeling of pathogenic variants in cancer. 345 
Our studies showed that Azurify can reach up to 96% accuracy when evaluating 346 
pathogenic variants in datasets from three independent CAP/CLIA-certified laboratories. 347 
Notably, Azurify reached 99.1% overall accuracy in classifying variants concordantly 348 
reported by two institutions. Additionally, we showed Azurify’s ability to effectively 349 
recapitulate molecular profiles observed in AML and CLL patients. Lastly, our method 350 
shows potential in profiling cancers for emergent variants including those informing 351 
clinical trials.  352 
 353 
With Azurify showing promise, the discussion of extending the classification data used in 354 
model training beyond a single institution is required. The SOCIAL project conducted in 355 
2019 evaluated the application of published guidelines and found that 59% of 356 
respondents did not adhere to published schema without alteration and concluded that 357 
aligning classification methods would reduce variation across reporting laboratories 358 
(Spence et al. 2019). Future iterations of Azurify hope to fill this unmet need by training 359 
models using a variety of classification methods across a broader range of clinical 360 
laboratories. The problem of circular labeling, where false positives are incorrectly 361 
confirmed and persist through data and derived models, is a consideration in multi-362 
institutional training when using supervised machine learning. The issue of false 363 
classification through circular labeling is considered by Cheng et al. as they approach 364 
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pathogenicity classification through predictive protein structures (Cheng et al. 2023). 365 
While impact based on predicted structure is not a professionally recommended feature, 366 
its emergence and accuracy may boost model performance and mitigate inherent circular 367 
labeling when using publicly available data for model generation. Other features such as 368 
clinical trial data and pharmacogenomic data may also boost model performance and 369 
warrant future work. 370 
 371 
To maximize algorithmic identification of emergent cancer-associated variants, we can 372 
benefit from Azurify’s flexibility, which allows continuous model improvement and 373 
publishing. For instance, MLops, which operationalizes constant integration and 374 
deployment of machine learning models, can be applied to Azurify so that new somatic 375 
variant classifications as well the latest resource data (i.e, new gnomAD or COSMIC 376 
releases) can be used to iteratively publish models with higher performance to more 377 
accurately reflect the latest observations in the field. 378 
 379 
In conclusion, Azurify achieves high accuracy and attempts to address the known gap in 380 
accessibility, variability and reproducibility of variant classifications through the 381 
application of machine learning using clinically classified variants. Its modular design 382 
allows users to classify variants with the existing model or newly trained models. Azurify 383 
is well documented and can be easily installed as a standalone program through 384 
https://github.com/faryabiLab/Azurify. 385 
  386 
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MATERIALS AND METHODS 
  
UPenn Dataset 
  
To train the Azurify variant classification algorithm, we extracted tumor-only high 
throughput sequencing data from 8,202 patient samples from the Hospital of the 
University of Pennsylvania’s (HUP) Center for Personalized Diagnostics (CPD) genomic 
database. Data were extracted and selected for single nucleotide variations (SNVs) and 
small insertions and deletions (indels) that were classified and reported according to a 
variation of ACMG/AMP 2015 guidelines. This yielded 896,899 variations sequenced over 
a 6-year period with 25,789 variations being unique and dispersed across 248 cancer 
consensus genes. These data were then queried against the HUP electronic medical 
record system and found to encompass 138 distinct cancer phenotypes according to input 
histology. The resulting dataset was then de-identified through selection of features 
relevant for classification. 
 
UAB and UC Datasets 
 
To evaluate the performance characteristics of the Azurify variant classification algorithm, 
we also obtained data from two laboratories that perform tumor-only high throughput 
sequencing for precision cancer medicine at the University of Alabama at Birmingham 
(UAB) and the University of Chicago (UC). Each institution provided de-identified variant 
data annotated with pathogenicity classifications by their respective team of experts. The 
resulting dataset contains 14,725 variants annotated with classification labels generated 
by both institutions and Azurify. 
 
UAB provided variant data from 31 AML patients and 30 lung cancer patients. The UAB 
AML dataset contained a total of 2,650 variants that spanned 53 distinct genes. UAB 
experts classified these AML variants as being either pathogenic, VUS, or benign. The 
UAB lung cancer dataset contained a total of 361 variants that spanned 211 genes. Only 
pathogenic and VUS variants were provided by UAB for the lung cancer dataset. 
 
UC provided variant data from 20 AML patients and 20 lung cancer patients. The UC AML 
dataset contained a total of 6,460 variants that spanned 150 distinct genes. The UC lung 
cancer dataset contained a total of 5,573 variants that spanned 158 distinct genes. UC 
experts classified AML and lung cancer variants into four tiers: pathogenic (Tier 1), likely 
pathogenic (Tier 2), VUS (Tier 3), and benign (Tier 4). 
 
To harmonize and compare UC and UAB cohorts, classifications were grouped as 
follows: pathogenic (pathogenic and likely pathogenic) and non-pathogenic (VUS and 
benign). Of the 53 UAB AML genes and 150 UC AML genes, 38 were found to be shared. 
Of the 38 shared UAB/UC AML genes, 24 genes in 52 patients contained alterations that 
had matching clinical classifications. Within these 24 genes and 52 patients there were 
954 variants that shared a clinical classification between the two institutions, with 48 of 
these variants being unique. Of the 211 UAB lung cancer genes and 159 UC lung cancer 
genes, 75 were shared. Of the 75 shared UAB/UC lung cancer genes, 6 genes in 24 
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patients contained alterations that had matching clinical classifications. Within these 6 
genes in 24 patients, there were 31 variants that shared a clinical classification between 
the two institutions, with 9 variants being unique.  

Feature Engineering 
  
We have selected 8 resources in conjunction with genomic features (i.e, translation effect, 
allelic frequency) to encompass published guidelines for the classification of somatic 
variations in cancer (Table S2). Available therapies for specific alterations were extracted 
from the Clinical Interpretation of Variants in Cancer database, CIViC, via the accepted 
variants data release variant call file (vcf). Genomic features such as allele frequency, 
amino acid change, variant type, exon number, and effect were acquired through vcf 
annotation with SnpEff version 4.1.1 (Cingolani et al. 2012). To determine population 
prevalence, allelic counts and frequencies were extracted from Genome Aggregation 
Database, gnomAD, accessible vcf version 2.1.1 (Gudmundsson et al. 2022) . Similarly, 
allelic counts for a given alteration were obtained from the Catalog of Somatic Mutations, 
COSMIC, via the downloadable vcf v67 (Tate et al. 2019). Missense Variant Pathogenicity 
prediction software (MVP) was used as an in-silico method due to its demonstrated higher 
AUC scores compared to other predictive models (Qi et al. 2021). To further assist in 
determination of pathogenicity, clinical assertions were obtained from ClinVar’s variant 
summary data as of June 2021 (Landrum et al. 2018). Pathway involvement was derived 
from genes in the KEGG cancer pathway (Kanehisa and Goto 2000). Domain data was 
also provided to the algorithm through the Uniprot consortium (UniProt Consortium 2021). 
Lastly, the number of publications associated with a given protein change was derived 
from National Center for Biotechnology Information’s (NCBI) LitVar application, which 
allows for the fuzzy searching of publications associated with protein changes (Allot et al. 
2018). Data was then aggregated through queries of chromosome, position, reference, 
and alternate alleles in human genome version 19 (hg19) and effectively forms a 
comprehensive feature set of resources grounded in professional recommendations. The 
8 resources combined with genomic features comprises a set of 15 mixed data types. 
  
Model Training 
  
We used the Catboost GBDT library (Prokhorenkova et al. 2018). To train the GBDT 
model, a 50-50 train-test split was performed and fed to the model at a learning rate of 
0.3. Cross-validation testing accuracy showed an average test accuracy of 99.5%, which 
did not measurably increase after 200 training iterations with the difference between 
iterations < 0.000001%. Iterative model generation using randomly sampled variants from 
the training set showed that at least 300,000 variants were required to distinguish the 
sparsely used classes. As a result, the final Azurify model was trained using the breadth 
of the training set (448,319 variants) and achieved 99.86% training accuracy at 198 
iterations. 
 
To rigorously assess model generalizability, key features such as gene, amino acid 
change, and specific amino acid properties were intentionally withheld during training and 
evaluated independently. While their exclusion resulted in only minor decreases in overall 
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accuracy, their subsequent inclusion in the final model ensured optimal performance by 
leveraging features that are reliably available at inference time. 
 
Analyses and Visualization 
 
Statistical differences between CLL molecular profiles were determined through Welch’s 
t-test using R (version 4.2.3) (R Core Team 2021). Co-occurrence and gene frequency 
analysis in AML and CLL were generated using GenVisR (Skidmore et al. 2016). 
Remaining figures were generated using ggplot2 and extended tidyverse packages 
(Wickham 2016). 
 
Software Usage 
 
Azurify is a Python based command line tool that requires the chromosome, position, 
reference, alternate base, as well as the allelic frequency in a tabular format as input. 
Azurify runs this input using SnpEFF version 4.1.1 to obtain annotations using hg19 as a 
base genome build. If required, the user may also select the hg38 genome build and a 
conversion tool, liftover 1.1.16, will be used to convert annotations and any failed 
conversions will be displayed in the user’s designated output folder directory. After user 
input into Azurify, resource aggregation is performed using the pandas python library. The 
completed dataset is then fed into Azurify model to process and obtain classifications, 
which are then directly merged back to the input creating the final call set. The user will 
receive all model features, variant classifications and the prediction probability of each 
variant class as tabular output. Software and its accompanied documentation can be 
found at https://github.com/faryabiLab/Azurify.  
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Figure 1. The Azurify Model.  

Azurify leverages gradient boosted decision trees (GBDT) on a feature set of 
ACMG/AMP/ASCO/CAP defined resources (left column), which are routinely utilized in 
the classification of somatic variants. These features are then aggregated and integrated 
with clinically reviewed variants (top-center gray box) to create a predictive model (center 
logo) capable of classifying protein changes based on their pathogenicity (right column).  
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Figure 2. Azurify’s individual feature importance and performance.  

A: Calculated feature importance shows translational effects, crowd sourced 
classifications, and in silico predictors are among the most influential features. Barplot 
showing percentage class contribution as a function of annotation features. Note that drug 
targets and pathway involvement contribute below 5% to model classification, which may 
be explained by the relatively low number of available therapies, as well as targeted assay 
bias towards cancer genes. 
 
B, C: ROC curves of each feature's ability to classify variants in the holdout data. Each 
ROC curve shows performance evaluation in predicting pathogenic (B) and VUS (C) 
variants when a given knowledgebase (i.e, gnomAD, MVP, etc) is added to genomic 
features (i.e, domain, coding effect, etc). Azurify outperforms any individual 
knowledgebase. 
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Figure 3. Evaluation of Azurify performance with holdout and the UPenn 
independent datasets. 
  
A: Azurify accurately classified pathogenic, VUS, and benign variations. Heatmap 
showing percentage of concordance between Azurify prediction and clinically reported 
somatic variants for benign, likely benign (L. Benign), likely pathogenic (L. Pathogenic), 
pathogenic, and VUS variations. Low concordance is observed in likely benign and likely 
pathogenic categories which had limited training data. 
 
B: Average precision (AP) shows high accuracy of Azurify in classifying pathogenic and 
benign variants with VUS variant classification at 88% AP. Each curve shows AP for 
benign, likely benign (L. Benign), likely pathogenic (L. Pathogenic), pathogenic, and VUS 
variations. Lower precision is observed in less prevalent classes (likely benign, likely 
pathogenic). 
 
C, D: Mosaic plots, in which the width of the bar represents class proportion, shows high 
accuracy in predicting frequently reported variant classes in the UPenn independent 
dataset when evaluating the genes present (C) and not present (D) in model training.  
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Figure 4. Azurify performance evaluation with independent harmonized data from 
two external laboratories.  
 
A: Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n=5,615) in 50 lung cancer cases from UAB and UC after label harmonization. 
 
B:  Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n=9,110) in 51 AML cases from UAB and UC after label harmonization. 
 
C: Heatmap showing the Azurify classification accuracy for lung cancer variants 
concordantly reported by UAB and UC (n = 31). 
 
D: Heatmap showing the Azurify classification accuracy for AML variants concordantly 
reported by UAB and UC (n = 954). 
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Figure 5. Azurify outperforms CancerVar.  
 
A: Azurify compares favorably to CancerVar. Azurify (blue) performs well when compared 
to CancerVar (red) when using the UPenn independent test data to evaluate % 
classification accuracy (X-axis). Notably pathogenic variants classified at a significantly 
higher rate in Azurify. Additionally, all variants return a classification when using Azurify 
where CancerVar fails to classify 27% of input data. 
 
B: Azurify identification of emergent variants. Up-set analysis shows the overlap of 
variants from the UPenn independent test set clinically reviewed as likely pathogenic but 
classified as pathogenic by Azurify and ClinVar. As discussed in the main text, variants 
classified by both Azurify and ClinVar as pathogenic were further reviewed and contained 
a somatic cancer variant required for clinical trial inclusion as well as pathogenic germline 
variant not associated with cancer.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2025. ; https://doi.org/10.1101/2025.04.18.649588doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.18.649588
http://creativecommons.org/licenses/by-nc-nd/4.0/


RPM

300

200

15

10

5

0

S
R

S
F2

 V
ar

ia
tio

n 
C

ou
nt

50 100 2000 150
Amino Acid

Pathogenic VUS Azurify Training

DNMT3A

TET2

ASXL1

SRSF2

NPM1

FLT3

TP53 

RUNX1

NRAS

IDH2

20 15 10 5 0

% Mutant AML Patient Samples (n = 617)

A B

Figure 6
.CC-BY-NC-ND 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted April 23, 2025. ; https://doi.org/10.1101/2025.04.18.649588doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.18.649588
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 6. Azurify accurately profiles co-occurring mutations in the UPenn AML 
cohort. 
  
A: Co-mutation analysis of the UPenn AML cohort using Azurify. Barplot on the left shows 
mutation frequencies for noted genes in the UPenn AML cohort. Heatmap on the right 
shows pathogenic mutations per patient (x-axis) as predicted by Azurify. 
 
B: Lollipop plot of SRSF2 mutations classified as VUS and pathogenic by Azurify. Plotted 
SRSF2 variation counts (y-axis) show that training data derived from targeted sequencing 
is centered at a particular amino acid (x-axis), 95, a common variant in AML patients. 
Despite lacking training data from sequences flanking the SRSF2 hotspot mutation, 
Azurify is still able to classify pathogenic and VUS variants.  
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Figure 7. Azurify recapitulates frequency of pathogenic mutations using the UPenn 
CLL cohort. 
 
A: Mutation analysis of the UPenn CLL cohort using Azurify. Barplot on the left shows 
mutation frequencies for noted genes in the UPenn CLL cohort. Heatmap on the right 
shows pathogenic mutations per patient (x-axis) as predicted by Azurify.  
 
B: Lollipop plot of BIRC3 mutations classified as VUS and pathogenic by Azurify. Plotted 
BIRC3 variation counts (y-axis) show that training data derived from targeted sequencing 
is centered around ZF domain variant in CLL patients. Despite lacking training data from 
sequences flanking the ZF domain, Azurify is still able to accurately classify pathogenic 
and VUS variants.  
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Figure S1. Characterization of different variant classes in the Azurify training data.  
 
A: Barplot shows class distribution of variant classes. A majority of variants in the training 
data are classified as benign with pathogenic and VUS classifications observed between 
3.7% and 4.2% of the time, respectively. Likely pathogenic and likely benign 
classifications are infrequent in the training data and only observed in less than 0.05% of 
variants. 
 
B: Alluvial analysis, which shows the flow of reclassified variants in the clinic, indicates 
that variant reclassification occasionally occurred during manual annotation in the training 
data, mostly impacting VUS variants.  
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Figure S2. Azurify model parameterization.  
 
A: Testing accuracy (y-axis) shows training beyond 200 iterations (x-axis) does not 
markedly improve the accuracy of GBDT model (< 0.000001%). 
 
B: Variant sampling in the training data shows accurate classification (y-axis) can be 
rapidly achieved for pathogenic, benign and to a lesser extent VUS variants. However, 
accurate classification of less frequent labels in the training data (i.e. likely benign and 
likely pathogenic) require a large n (> 300000). 
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Figure S3. ROC Analysis of individual features by class.  
 
A-C: ROC curves of each feature's ability to classify variants in the holdout data. Each 
ROC curve shows performance evaluation in predicting likely pathogenic (A), likely 
benign (B), and benign (C) variants when a given knowledgebase (i.e, gnomAD, MVP, 
etc) is added to genomic features (i.e, domain, coding effect, etc).  
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Figure S4. Precision-recall analysis based on solid tumor prevalence in the UPenn 
cohort.  
 
A-D: Precision-recall curves of solid tumor phenotypes, divided into quartiles based on 
presentation frequency in the holdout data. Each precision-recall curve shows 
performance in predicting all 5 Azurify classes in quartile 1 (A), quartile 2 (B), quartile 3 
(C), and quartile 4 (D). 
 
E-F: Precision-recall curves for all the solid tumor (E) and only breast cancer (F) cases in 
the holdout data. This analysis shows no marked difference between Azurify average 
precision for classifying variants in breast cancer compared to other solid tumors in the 
UPenn solid tumor holdout cohort. 
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Figure S5. Azurify performance assessment with variants from lung cancer and 
AML cases UAB and UC CAP/CLIA-certified laboratories.  
 
A: Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n = 2,650) across 53 genes in 31 AML cases from UAB, where variants are 
graded into three classes: benign, pathogenic and VUS. 
 
B: Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n = 6,450) across 150 genes in 20 AML cases from UC, where variants are 
graded into four classes: pathogenic (Tier 1), likely pathogenic (Tier 2), VUS (Tier 3), and 
benign (Tier 4). 
 
C: Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n =361) across 211 genes in 30 lung cancer cases from UAB, where variants 
are graded into two classes: pathogenic and VUS. 
 
D: Heatmap showing the Azurify classification accuracy for clinically reported somatic 
variants (n = 5,254) across 158 genes in 20 lung cancer cases from UC, where variants 
are graded into four classes: pathogenic (Tier 1), likely pathogenic (Tier 2), VUS (Tier 3), 
and benign (Tier 4). 
 
E: Comparison of variant labels in UC and UAB lung cancer cases. Despite different 
variant reporting schema, classification of 31 mutually reported variants in 6 genes were 
100% concordant. 

F: Comparison of variant labels in UC and UAB AML cases. Despite different variant 
reporting schema, classification of 954 mutually reported variants in 24 genes were 
concordant.  
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Figure S6. Azurify outperforms CancerVar in annotating data from UAB and UC 
CAP/CLIA-certified laboratories.  
 
A: Azurify (blue) and CancerVar (red) classification accuracy % for all the variants 
reported for AML and lung cancer cases by UAB and UC (n = 14,725). N/A: variants that 
an algorithm failed to classify.  
 
B: Azurify (blue) and CancerVar (red) classification accuracy % for variants concordantly 
reported for AML and lung cancer cases by UAB and UC (n = 985). N/A: variants that an 
algorithm failed to classify.  
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Figure S7. Azurify classifies variants in AML and CLL. 
 
A: Zoomed-in lollipop plot of SRSF2 mutations showing that Azurify is still able to 
accurately classify additional pathogenic and VUS variants around amino acid 95, a 
common variant in AML. Note that only a subset of pathogenic variants was present in 
the Azurify training data, as marked by dash lines.  
 
B: Zoomed-in lollipop plot of BIRC3 mutations showing that Azurify is still able to 
accurately classify pathogenic and VUS variants around amino acids 537-564, which are 
known to be pathologically relevant in CLL. Note that only a subset of pathogenic variants 
was present in the Azurify training data, as marked by dash lines. 
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Supplemental Table Legends 
 
Table S1. Cancer phenotypes used in the Azurify model training. 
 
Table S2. Features and resources used in the Azurify model.  
 
Table S3. Frequency of solid tumor phenotypes in the holdout data. 
 
Table S4. Genes included in model training and UPenn independent datasets. 
 
Table S5. UAB and UC meta-data and gene lists.  
 
Table S6. Histology / disease count in the UPenn independent cohort. 
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