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SUMMARY 
 

Optical chromatin tracing experiments directly capture the three-dimensional folding of thousands 

of individual alleles, highlighting the need for a tool that enables fast, interactive, and analytical 

browsing of such data. Here, we introduce Optical Looping Interactive Viewing Engine (OLIVE), 

a web-based tool designed for high-throughput chromatin tracing data that functions similarly to 

genome browsers. OLIVE allows users, regardless of computational expertise, to input their own 

data for automated reconstruction of chromatin fibers at individual alleles or to browse annotated 

publicly available datasets. Using OLIVE’s functionalities, users can interact with three-

dimensional presentation of traced alleles and query them based on spatial features, including 

pairwise distances and perimeters between their segments. Finally, OLIVE calculates and 

presents several polymer physics metrics of each allele, providing quantitative summaries for 

hypothesis-driven studies. OLIVE is an open-source project accessible 

at https://faryabilab.github.io/chromatin-traces-vis/. 

 

INTRODUCTION  
 

Chromatin folding has emerged as an important regulator of precise gene expression. Over the 

past two decades, experimental approaches based on DNA fluorescent in situ hybridization (FISH) 

imaging have been instrumental in visualizing features of chromatin folding in individual cells 1. 

More recently, Oligopaint DNA FISH probe design and synthesis have greatly increased coverage, 

resolution, and versatility of DNA FISH-based methods. These advancements, combined with 

high-throughput imaging, have led to the development of sequential DNA FISH techniques, 
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including Optical Reconstruction of Chromatin Architecture (ORCA)2, DNA-MERFISH3, DNA 

seqFISH+4, and Hi-M5, and Multiplexed Imaging of Nucleome Architectures (MINA)6. These 

methods allow direct tracing of chromatin fiber spatial positioning at thousands of individual alleles 

at sub-diffraction resolutions, creating a growing need to visualize, assess and interpret results in 

an intuitive and rapid manner.  

 

To address this unmet need and make chromatin tracing data more accessible to the community, 

we introduce OLIVE: an easy-to-use, interactive web tool for the reconstruction, visualization and 

analysis of alleles from chromatin tracing experiments. Using OLIVE’s functionalities, users can 

automatically render, interact, explore and analyze their own chromatin tracing data. OLIVE also 

enables users to browse, query and analyze annotated publicly available chromatin tracing 

datasets. 

 

RESULTS 
 

Chromatin tracing techniques utilize pools of primary oligos complementary to target genomic 

sequences, which are linked to barcoded oligos serving as binding sites for fluorescent secondary 

oligos. Depending on the experimental design, each unique barcode can cover the probes 

spanning various genomic distances raging from 2 kilobases (Kb) up to 1 megabase (Mb). 

Chromatin tracing is achieved by sequentially hybridizing, imaging and removing fluorescent 

secondary probes matching the barcodes one at a time, which are variably referred to as readout, 

step, or segment.  

 

OLIVE web tool provides a solution for user-friendly and interactive exploration and analysis of 

thousands of alleles optically mapped by chromatin tracing experiments. Users can upload tabular 

data containing chromatin segment coordinates based on their experimental configuration or 

browse through annotated publicly available datasets (Fig. 1A). In both scenarios, users can 

interact with and query the 3D chromatin fiber reconstruction of individual alleles (Fig. 1B). OLIVE 

also enables the calculation, visualization and exploration of several distance-based and polymer 

physics metrics (Fig. 1C). 

 

To support access to published datasets, OLIVE stores data from curated chromatin tracing 

experiments as an AWS S3 bucket (Fig. 1A). Metadata for each chromatin tracing experiment is 

maintained in a MySQL database hosted on an AWS RDS instance (Fig. 1A). Communication 
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between OLIVE’s front end and back end database is facilitated through APIs provided by a Flask 

application running on an AWS EC2 instance. To explore available datasets, users can browse a 

table, filter and sort columns, and perform global searches to query metadata.  

 

Beyond accessing existing data, OLIVE allows users to upload their own datasets containing 

coordinates of segments from uniquely identifiable chromatin traces (Fig. 1A). Raw images from 

different chromatin tracing assays can be processed using tools such as ChrTracer3 and 

MinaAnalyst, as previously described in detail7,8. The output from these programs consists of 

comprehensive tabular files listing registered alleles along with the X, Y, Z positions of each 

readout’s optical centroid after corrections for potential aberrations and spot-fitting. OLIVE 

accepts a simplified version of these outputs, formatted according to 4D Nucleome (4DN) 

recommendations. For each registered segment of traced chromatins, OLIVE input must include 

the field of view (FOV), allele number (S), segment (Readout) number, and X, Y, Z coordinates in 

nanometers, provided in comma-separated format (Fig. 1C). OLIVE provides utility scripts to 

facilitate these file format conversions. 

 

The folding of individual chromatin traces can be examined in multiple ways. One common 

approach is to visually inspect reconstructed chromatin by plotting chromatin segment positions 

as a smoothed 3D curve connecting readouts (Figs. 1B and 1C). Due to experimental challenges 

– such as target genomic region length, probe specificity, and microscope detection sensitivity – 

some chromatin traces may have missing readouts. To enable downstream analysis, OLIVE 

imputes missing readouts using linear interpolation based on flanking readouts. Following 

imputation, OLIVE reconstructs the 3D structure of each traced chromatin fiber per FOV by first 

generating a smooth spline tube geometry using the Catmull-Rom algorithm, followed by 

rendering individual spheres for each coordinate. The geometric center of the trace is then aligned 

to the origin of the 3D plot. Users can view, zoom, and rotate each trace, which is visualized as a 

beads-on-a-string 3D object (Fig. 1B). 

 

Using the beads-on-a-string 3D representation of chromatin traces, users can perform a variety 

of interactive, distance-based analysis in OLIVE (Fig. 1C). Each sphere in the 3D rendering of 

chromatin trace is a clickable component. When selected, all segments within a specified radius 

are highlighted. Users can also measure the Euclidean distance between any two selected 

segments on a chromatin trace. To refine their search for representative alleles, users may filter 

alleles based on pairwise distances between two selected segments.  
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Additionally, OLIVE enables users to interactively examine the spatial perimeter formed by any 

three segments on a chromatin trace – an analysis that informs potential three-way interactions 

between regulatory elements. OLIVE also automatically computes the Euclidian pairwise distance 

matrix of each allele and presents the results as an interactive heatmap, linked to its 

corresponding chromatin trace rendering. 

 

To obtain a more holistic view of chromatin folding, users can compute several polymer physics 

metrics for each chromatin trace. OLIVE automatically calculates the radius of gyration – a 

measure of chromatin fiber compaction – for each allele, and compare these values across alleles 

in the same FOV using a box-and-whisker plot. OLIVE also generates a centrality profile by 

determining each allele’s geometric center and computing the distance of each segment from that 

center. Finally, OLIVE offers highly customizable color schemes and output formats, enabling 

users to download 3D trace rendering and quantitative analysis results as high-resolution, 

publication-quality images.  

 

DISCUSSION 
 

Accelerating access to, utilization of, and analysis of chromatin tracing data is critical for 

advancing single-allele resolution studies of genome folding. To facilitate the exploration and 

analysis of both new and existing chromatin tracing data, we have developed OLIVE – a unified, 

interactive web tool that integrated rapid modeling, querying, and quantification of chromatin 

folding at the allele level. As more datasets are added to OLIVE, the platform will enable the 

generation of new biological hypotheses and discoveries through rapid and systematic analysis 

of chromatin tracing data. As of this writing, OLIVE hosts more than 40 annotated chromatin 

tracing datasets. Leveraging AWS cloud infrastructure, OLIVE is equipped to receive, process, 

and publish many more. Researchers can submit their chromatin tracing data for inclusion in 

OLIVE using a streamlined metadata specification form available on the portal. Once published, 

datasets can be browsed, queried, and analyzed using OLIVE’s computational resources. OLIVE 

is open-source, well-documented, and accessible at https://faryabilab.github.io/chromatin-traces-

vis/ for fast, interactive, and analytical browsing of chromatin tracing data.  
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Figure 1: OLIVE enables interactive browsing, query, and analysis of new and publicly 
available chromatin traces. 
 
A: Schematic of OLIVE front end, back end, APIs, web user interface, and data flow. 

 

B: Representative view of OLIVE’s chromatin trace visualization (top) and polymer physics 

metric calculations (bottom).  

 

C: Schematic showing possible interactive analysis using OLIVE’s tabular data input. Top-left: 

required fields in the chromatin trace input file. Top-right: calculation of Euclidian pairwise 

distances, three-way perimeter, distance matrix, and centrality profile of allele 11 in FOV 1, 

visualized by OLIVE. Bottom-right: Alleles 128 and 349 were identified using OLIVE’s pairwise 

distance search, where the distance between readouts 30 and 46 is less than 250 nm. Bottom-

left: comparison of the radius of gyration (Rg) of alleles 11 (highlighted in red) with all other 

alleles in FOV 1 (shown in a box-and-whisker plot).   
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